EXERCISES [MAI 4.10]

BINOMIAL DISTRIBUTION

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)

	exactly	y 4 heads	0.	273		
	exactly 3 heads			0.219		
	3, 4 or 5 heads			0.711		
	no heads		0.	0.00391		
	always heads			0.00391		
	at most 2 heads		0.	0.145		
	at least 3heads		0.	0.855		
(b)						
	T (T A	4		/ * *	-	

$$E(X) \quad 4 \quad Var(X) \quad 2$$

2.
$$np = 10$$
 and $np(1-p) = 6$. Hence $10(1-p) = 6 \Leftrightarrow p = 0.4$ and $n = 25$

3.
$$B(n, p)$$
 with $n = 5$ and $p = \frac{1}{2}$

- (a) $P(X=3) = 0.3125 \dots = 0.313$
- (b) $P(X \ge 1) = 0.969$

4.
$$B(n, p)$$
 with $n = 7$ and $p = 0.18$

- (a) P(X=2) = 0.252
- (b) $P(X \ge 2) = 0.368$
- 5. B(n, p) with n = 100 and p = 0.04
 - (a) mean = $np = 100 \times 0.04 = 4$
 - (b) P(X=6) = 0.105
 - (c) $P(X \ge 1) = 0.983$
- 6. $X \sim B(100, 0.02)$
 - (a) $E(X) = 100 \times 0.02 = 2$ (b) (i) P(X=3) = 0.182 (ii) P(X>1) = 0.597

7.
$$p(\text{Red}) = \frac{35}{40} = \frac{7}{8}$$
 $p(\text{Black}) = \frac{5}{40} = \frac{1}{8}$
(a) $B(n, p)$ with $n = 8$, $p = \frac{1}{8}$
(i) $p(\text{one black}) = P(X = 1) = 0.393$ to 3 s.f. (ii) $p(\text{at least one black}) = P(X \ge 1)$
(b) 400 draws: expected number of blacks $= \frac{400}{8} = 50$

8. $X \sim B(n, p)$ with n = 5 and $p = \frac{1}{3}$

Therefore P(X=3) = 0.165

= 0.656

- 9. (a) Probability = 0.138 (b) Probability = $(0.6)^2 \times 0.4 = 0.144 \left(\text{or} \frac{18}{125} \right)$
- 10. (a) X is B(10, 0.25) $E(X) = 10 \times 0.25 = 2.5$ (b) $P(X \le 2) = 0.526$
- 11. *X* is Binomial n = 5 p = 0.4P($X \le 3$) = 0.913 to 3 s.f.
- 12. (a) B(n, p) with n = 3, $p = \frac{1}{3}$ (i) P(X=3) = 0.0370 or $P(3H) = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$ (ii) P(X=3) = 0.222 or $P(2H, 1T) = 3\left(\frac{1}{3}\right)^2 \frac{2}{3} = \frac{2}{9}$ (b) (i) expected number of heads $= np = \left(\frac{1}{3} \times 12\right) = 4$ (ii) 4 heads, so 8 tails
 - 4 heads, so 8 tails E(winnings) = $4 \times 10 - 8 \times 6 (= 40 - 48) = -\$ 8$
- **13.** B(n, p) with n = 7, $p = \frac{1}{5}$ P(X = 4) = 0.0287 $P(X \ge 4) = 0.0333$

14.
$$B(n, p)$$
 with $n = 20$, $p = \frac{1}{4}$

- (a) $E(X) = 20 \times \frac{1}{4} = 5$
- (b) P(X=5) = 0.202 to 3 s.f.
- (c) P(X < 5) = 0.415 to 3 s.f. [less than five means $P(X \le 4)$]

15. (a) P(all ten cells fail) =
$$0.107$$
 (or 0.8^{10})

(b) (satellite is still operating at the end of one year if $X \ge 1$ P($X \ge 1$) = 0.893 (or 1 - 0.107= 0.893)

16. (i) mean =
$$10 \times 0.4 = 4$$

(ii) check P(X = 3) = 0.214, P(X = 4) = 0.251, P(X = 5) = 0.201 so mode = 4
(iii) variance = $10 \times 0.4 \times 0.6 = 2.4$

(iv) st. dev = $\sqrt{2.4} = 1.55$

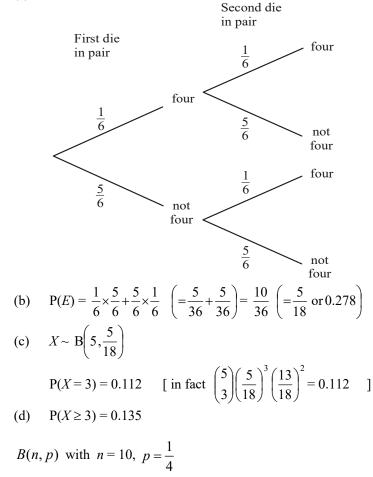
17. (i) mean =
$$10 \times \frac{1}{4} = 2.5$$

(ii) check P(X=2) = 0.281, P(X=3) = 0.250 so mode = 2

(iii) variance =
$$10 \times \frac{1}{4} \times \frac{3}{4} = \frac{15}{8} = 1.875$$

(iv) st. dev =
$$\sqrt{1.875} = 1.37$$

18. (a)



(a)
$$E(X) = 10 \times \frac{1}{4} = 2.5$$

(b) P(X=6) = 0.0162

19.

(c)
$$P(X \ge 2) = 0.756$$

(d) Since E(X) = 2.5 the mode is 2 or 3 Using GDC

X		P(X = x)		
	1	0.188		
	2	0.282		
	3	0.250		

From these values the most likely number of yellow ribbons is 2.

(e) The probability that a ribbon is yellow remains constant (= $\frac{1}{4}$)

20.
$$B(n, p)$$
 with $n = 20, p = 0.3$

- (a) Mean = $20 \times 0.3 = 6$ Variance = $20 \times 0.3 \times 0.7 = 4.2$
- (b) (i) P(X=5) = 0.179 (ii) $P(4 \le X \le 8) = 0.780$
- (c) 0.3
- (d) $0.7 \times 0.7 \times 0.3 = 0.147$