EXERCISES [MAI 4.10]

BINOMIAL DISTRIBUTION

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)

exactly 4 heads	0.273
exactly 3 heads	0.219
3,4 or 5 heads	0.711
no heads	0.00391
always heads	0.00391
at most 2 heads	0.145
at least 3heads	0.855

(b)

$\mathrm{E}(X)$	4	$\operatorname{Var}(X)$	2

2. $n p=10$ and $n p(1-p)=6$. Hence $10(1-p)=6 \Leftrightarrow p=0.4$ and $n=25$
3. $B(n, p)$ with $n=5$ and $p=\frac{1}{2}$
(a) $\mathrm{P}(X=3)=0.3125 \ldots=0.313$
(b) $\quad \mathrm{P}(X \geq 1)=0.969$
4. $\quad B(n, p)$ with $n=7$ and $p=0.18$
(a) $\mathrm{P}(X=2)=0.252$
(b) $\mathrm{P}(X \geq 2)=0.368$
5. $\quad B(n, p)$ with $n=100$ and $p=0.04$
(a) mean $=n p=100 \times 0.04=4$
(b) $\mathrm{P}(X=6)=0.105$
(c) $\mathrm{P}(X \geq 1)=0.983$
6. $X \sim \mathrm{~B}(100,0.02)$
(a) $E(X)=100 \times 0.02=2$
(b) (i) $\mathrm{P}(X=3)=0.182 \quad$ (ii) $\mathrm{P}(X>1)=0.597$
7. $p($ Red $)=\frac{35}{40}=\frac{7}{8} \quad p($ Black $)=\frac{5}{40}=\frac{1}{8}$
(a) $B(n, p)$ with $n=8, p=\frac{1}{8}$
(i) $p($ one black $)=\mathrm{P}(X=1)=0.393$ to 3 s.f. \quad (ii) $p($ at least one black $)=\mathrm{P}(X \geq 1)=0.656$
(b) 400 draws: expected number of blacks $=\frac{400}{8}=50$
8. $\quad X \sim B(n, p)$ with $n=5$ and $p=\frac{1}{3}$

Therefore $\mathrm{P}(X=3)=0.165$
9. (a) Probability $=0.138$
(b) Probability $=(0.6)^{2} \times 0.4=0.144\left(\right.$ or $\left.\frac{18}{125}\right)$
10. (a) X is $B(10,0.25)$
$\mathrm{E}(X)=10 \times 0.25=2.5$
(b) $\mathrm{P}(X \leq 2)=0.526$
11. X is Binomial $n=5 \quad p=0.4$
$\mathrm{P}(X \leq 3)=0.913$ to 3 s.f.
12. (a) $B(n, p)$ with $n=3, p=\frac{1}{3}$
(i) $\mathrm{P}(X=3)=0.0370$ or $\mathrm{P}(3 H)=\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$
(ii) $\mathrm{P}(X=3)=0.222 \quad$ or $\mathrm{P}(2 H, 1 T)=3\left(\frac{1}{3}\right)^{2} \frac{2}{3}=\frac{2}{9}$
(b) (i) expected number of heads $=n p=\left(\frac{1}{3} \times 12\right)=4$
(ii) 4 heads, so 8 tails
$\mathrm{E}($ winnings $)=4 \times 10-8 \times 6(=40-48)=-\$ 8$
13. $B(n, p)$ with $n=7, p=\frac{1}{5}$

$$
\begin{aligned}
& P(X=4)=0.0287 \\
& P(X \geq 4)=0.0333
\end{aligned}
$$

14. $B(n, p)$ with $n=20, p=\frac{1}{4}$
(a) $\mathrm{E}(X)=20 \times \frac{1}{4}=5$
(b) $\mathrm{P}(X=5)=0.202$ to 3 s.f.
(c) $\mathrm{P}(X<5)=0.415$ to 3 s.f. [less than five means $\mathrm{P}(X \leq 4)$]
15. (a) $\quad P($ all ten cells fail $)=0.107 \quad\left(\right.$ or $\left.0.8^{10}\right)$
(b) (satellite is still operating at the end of one year if $X \geq 1$

$$
\mathrm{P}(X \geq 1)=0.893 \quad(\text { or } 1-0.107=0.893)
$$

16. (i) mean $=10 \times 0.4=4$
(ii) check $\mathrm{P}(X=3)=0.214, \mathrm{P}(X=4)=0.251, \mathrm{P}(X=5)=0.201$ so mode $=4$
(iii) variance $=10 \times 0.4 \times 0.6=2.4$
(iv) st. $\mathrm{dev}=\sqrt{2.4}=1.55$
17. (i) mean $=10 \times \frac{1}{4}=2.5$
(ii) check $\mathrm{P}(X=2)=0.281, \mathrm{P}(X=3)=0.250$ so mode $=2$
(iii) variance $=10 \times \frac{1}{4} \times \frac{3}{4}=\frac{15}{8}=1.875$
(iv) st. $\mathrm{dev}=\sqrt{1.875}=1.37$

B. Paper 2 questions (LONG)

18. (a)

(b) $\mathrm{P}(E)=\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6} \quad\left(=\frac{5}{36}+\frac{5}{36}\right)=\frac{10}{36}\left(=\frac{5}{18}\right.$ or 0.278$)$
(c) $\quad X \sim B\left(5, \frac{5}{18}\right)$
$\mathrm{P}(X=3)=0.112 \quad\left[\right.$ in fact $\left.\binom{5}{3}\left(\frac{5}{18}\right)^{3}\left(\frac{13}{18}\right)^{2}=0.112 \quad\right]$
(d) $\mathrm{P}(X \geq 3)=0.135$
19. $B(n, p)$ with $n=10, p=\frac{1}{4}$
(a) $\mathrm{E}(X)=10 \times \frac{1}{4}=2.5$
(b) $\mathrm{P}(X=6)=0.0162$
(c) $\mathrm{P}(X \geq 2)=0.756$
(d) Since $\mathrm{E}(X)=2.5$ the mode is 2 or 3

Using GDC

x	$\mathrm{P}(X=x)$
1	0.188
2	0.282
3	0.250

From these values the most likely number of yellow ribbons is 2 .
(e) The probability that a ribbon is yellow remains constant $\left(=\frac{1}{4}\right)$
20. $B(n, p)$ with $n=20, p=0.3$
(a) Mean $=20 \times 0.3=6 \quad$ Variance $=20 \times 0.3 \times 0.7=4.2$
(b) (i) $\mathrm{P}(X=5)=0.179$
(ii) $\mathrm{P}(4 \leq X \leq 8)=0.780$
(c) 0.3
(d) $0.7 \times 0.7 \times 0.3=0.147$

